ROME
Last updated
Last updated
Execution function: Execute the ROME update algorithm for the specified update at the specified layer
Paramters
model(PreTrainedModel): model to be edited
tok(PreTrainedTokenizer): tokenizer for inputs
requests(List[Dict]): The edit descriptors and targets.
hparams(Hyperparams): hyperparameters for editing method
Return Type
delta(Dict[str, Tuple[torch.Tensor]]): new delta weights
Main function: Given the request, it applies ROME to your model. Return the changed weights of the model.
Paramters
model(PreTrainedModel): model to be edited
tok(PreTrainedTokenizer): tokenizer for inputs
requests(List[Dict]): The edit descriptors and targets.
hparams(Hyperparams): hyperparameters for editing method
copy(bool): whether to copy original model
return_orig_weights(bool): whether to return the weights of original model
keep_original_weight(bool): whether to edit sequentially
False
: edit sequentially(because the original weight is not maintained after each edit)
True
: not edit sequentially
Return Type
edited_model(PreTrainedModel): model weights after editing