ROME

execute_rome() -> Dict[str, Tuple[torch.Tensor]]
apply_rome_to_model()-> PreTrainedModel
Example
Last updated

Last updated
def execute_rome(
model: AutoModelForCausalLM,
tok: AutoTokenizer,
request: Dict,
hparams: ROMEHyperParams,
) -> Dict[str, Tuple[torch.Tensor]]:def apply_rome_to_model(
self,
model: AutoModelForCausalLM,
tok: AutoTokenizer,
requests: List[Dict],
hparams: ROMEHyperParams,
copy=False,
return_orig_weights=False,
keep_original_weight=False,
**kwargs
):// ...
hparams = ROMEHyperaParams.from_hparams("llama-7b.yaml")
editor = BaseEditor.from_hparams(hparams)
prompts = ['What university did Watts Humphrey attend?',
'Which family does Ramalinaceae belong to',
'What role does Denny Herzig play in football?'
]
target_new = ['University of Michigan',
'Lamiinae',
'winger'
]
metrics, edited_model, _ = editor.edit(
prompts=prompts,
target_new=target_new,
keep_original_weight=True
)